Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Neurogenetics ; 25(1): 13-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917284

RESUMEN

An intronic bi-allelic pentanucleotide repeat expansion mutation, (AAGGG)400-2000, at AAAAG repeat locus in RFC1 gene, is known as underlying genetic cause in cases with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) and late-onset sporadic ataxia. Biallelic positive cases carry a common recessive risk haplotype, "AAGA," spanning RFC1 gene. In this study, our aim is to find prevalence of bi-allelic (AAGGG)exp in Indian ataxia and other neurological disorders and investigate the complexity of RFC1 repeat locus and its potential association with neurodegenerative diseases in Indian population-based cohorts. We carried out repeat number and repeat type estimation using flanking PCR and repeat primed PCR (AAAAG/AAAGG/AAGGG) in four Indian disease cohorts and healthy controls. Haplotype assessment of suspected cases was done by genotyping and confirmed by Sanger sequencing. Blood samples and consent of all the cases and detailed clinical details of positive cases were collected in collaboration with A.I.I.M.S. Furthermore, comprehension of RFC1 repeat locus and risk haplotype analysis in Indian background was performed on the NGS data of Indian healthy controls by ExpansionHunter, ExpansionHunter Denovo, and PHASE analysis, respectively. Genetic screening of RFC1-TNR locus in 1998 uncharacterized cases (SCA12: 87; uncharacterized ataxia: 1818, CMT: 93) and 564 heterogenous controls showed that the frequency of subjects with bi-allelic (AAGGG)exp are 1.15%, < 0.05%, 2.15%, and 0% respectively. Two RFC1 positive sporadic late-onset ataxia cases, one bi-allelic (AAGGG)exp and another, (AAAGG)~700/(AAGGG)exp, had recessive risk haplotype and CANVAS symptoms. Long normal alleles, 15-27, are significantly rare in ataxia cohort. In IndiGen control population (IndiGen; N = 1029), long normal repeat range, 15-27, is significantly associated with A3G3 and some rare repeat motifs, AGAGG, AACGG, AAGAG, and AAGGC. Risk-associated "AAGA" haplotype of the original pathogenic expansion of A2G3 was found associated with the A3G3 representing alleles in background population. Apart from bi-allelic (AAGGG)exp, we report cases with a new pathogenic expansion of (AAAGG)exp/(AAGGG)exp in RFC1 and recessive risk haplotype. We found different repeat motifs at RFC1 TNR locus, like AAAAG, AAAGG, AAAGGG, AAAAGG, AAGAG, AACGG, AAGGC, AGAGG, and AAGGG, in Indian background population except ACAGG and (AAAGG)n/(AAGGG)n. Our findings will help in further understanding the role of long normal repeat size and different repeat motifs, specifically AAAGG, AAAGGG, and other rare repeat motifs, at the RFC1 locus.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Ataxia
2.
iScience ; 26(12): 108336, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025778

RESUMEN

COVID-19 pandemic saw emergence of multiple SAR-CoV-2 variants. Exacerbated risk of severe outcome and hospital admissions led us to comprehend differential host-immune kinetics associated with SARS-CoV-2 variants. Longitudinal investigation was conducted through different time periods of Pre-VOC and VOCs (Delta & Omicron) mapping host transcriptome features. Robust antiviral type-1 interferon response marked Omicron infection, which was largely missing during Pre-VOC and Delta waves. SARS-CoV-2-host protein-protein interactions and docking complexes highlighted N protein to interact with HNRNPA1 in Pre-VOC, demonstrating its functional role for enhanced viral replication. Omicron revealed enhanced binding efficiency of LARP1 to N protein, probably potentiating antiviral effects of LARP1. Differential expression of zinc finger protein genes, especially in Omicron, mechanistically support induction of strong IFN (Interferon) response, thereby strengthening early viral clearance. Study highlights eventual adaptation of host to immune activation patterns that interrupt virus evolution with enhanced immune-evasion mutations and counteraction mechanisms, delimiting the next phase of COVID-19 pandemic.

3.
Brief Funct Genomics ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986554

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant. As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches, including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators, currently being studied and reiterate the importance of translational research in the development of various strategies to contain COVID-19.

4.
iScience ; 26(10): 107779, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37701571

RESUMEN

Emergence of new SARS-CoV-2 VOCs jeopardize global vaccine and herd immunity safeguards. VOCs interactions with host microbiota might affect clinical course and outcome. This longitudinal investigation involving Pre-VOC and VOCs (Delta & Omicron) holo-transcriptome based nasopharyngeal microbiome at taxonomic levels followed by metabolic pathway analysis and integrative host-microbiome interaction. VOCs showed enrichment of Proteobacteria with dominance of Pseudomonas. Interestingly, Proteobacteria with superiority of Pseudomonas and Acinetobacter, were highlights of Delta VOC rather than Omicron. Common species comprising the core microbiome across all variants, reiterated the significance of Klebsiella pneumoniae in Delta, and its association with metabolic pathways enhancing inflammation in patients. Microbe-host gene correlation network revealed Acinetobacter baumannii, Pseudomonas stutzeri, and Pseudomonas aeuroginosa modulating immune pathways, which might augment clinical severity in Delta. Importantly, opportunistic species of Acinetobacter, Enterococcus, Prevotella, and Streptococcus were abundant in Delta-mortality. The study establishes a functional association between elevated nasal pathobionts and dysregulated host response, particularly for Delta.

5.
Sci Rep ; 13(1): 14170, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644081

RESUMEN

Dengue virus (DENV), known to cause viral infection, belongs to the family Flaviviridae, having four serotypes (DENV1-4) that spreads by the bite of the Aedes aegypti mosquito. India has been suffering from dengue outbreaks annually with widespread epidemics by prevalence of all the four DENV serotypes. The diverse spectrum of clinical manifestations in dengue infection, mild to severe forms, makes the need of timely diagnosis and prompt treatment an essence. The identification of a dengue host response signature in serum can increase the understanding of dengue pathogenesis since most dengue NS1 Ag tests have been developed and evaluated in serum samples. Here, to understand the same, we undertook a dual RNA-sequencing (RNA-Seq) based approach from the serum samples of dengue-infected patients. The results thus yield the early transcriptional signatures that discriminated the high viral reads patients from patients who had low dengue viral reads. We identified a significant upregulation of two sets of genes, key antiviral (IFIT3, RSAD2, SAT1) and vascular dysfunction (TNFS10, CXCL8) related genes in the high viral reads group. Deeper delving of this gene profile revealed a unique two-way response, where the antiviral genes can mediate the disease course to mild, contrarily the increased expression of the other gene set might act as pointers of severe disease course. Further, we explored the hematologic parameters from the complete blood count (CBC), which suggests that lymphocytes (low) and neutrophils (high) might serve as an early predictor of prognosis in dengue infection. Collectively, our findings give insights into the foundation for further investigation of the early host response using the RNA isolated from dengue patients' serum samples and opens the door for careful monitoring of the early clinical and transcriptome profiles for management of the dengue patients.


Asunto(s)
Aedes , Dengue , Animales , Humanos , Transcriptoma , Gravedad del Paciente , Aedes/genética , Antivirales , Dengue/genética
6.
J Pediatr Genet ; 12(2): 141-143, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37090827

RESUMEN

Hypotonia is a symptom of diminished tone of skeletal muscle and can be nongenetic or a part of genetic syndrome. Hypotonia, developmental delay, and facial dysmorphism are nonspecific findings observed in many genetic syndromes mostly in chromosomal microdeletion and duplication. Here we report a case with severe hypotonia and facial dysmorphism, diagnosed with deletion at 6q13q14.3 by array comparative genomic hybridization (CGH) at very early age. Recent genetic diagnostic technologies such as array CGH may enable clinicians to diagnose chromosomal abnormalities earlier and provide appropriate medical management.

7.
Microbiol Spectr ; 11(3): e0429222, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37022180

RESUMEN

Globally, COVID-19 vaccines have emerged as a boon, especially during the severe pandemic phases to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, saving millions of lives. However, mixed responses to vaccination with breakthrough challenges provided a rationale to explore the immune responses generated postvaccination, which plausibly alter the subsequent course of infection. In this regard, we comprehensively profiled the nasopharyngeal transcriptomic signature of double-dose-vaccinated individuals with breakthrough infections in comparison to unvaccinated infected persons. The vaccinated individuals demonstrated a gross downregulation of ribosomal proteins along with immune response genes and transcription/translational machinery that methodically modulated the entire innate immune landscape toward immune tolerance, a feature of innate immune memory. This coordinated response was orchestrated through 17 transcription factors captured as differentially expressed in the vaccination breakthroughs, including epigenetic modulators of CHD1 and LMNB1 and several immune response effectors, with ELF1 emerging as one of the important transcriptional regulators of the antiviral innate immune response. Deconvolution algorithm using bulk gene expression data revealed decreased T-cell populations with higher expression of memory B cells in the vaccination breakthroughs. Thus, vaccination might synergize the innate immune response with humoral and T-cell correlates of protection to more rapidly clear SARS-CoV-2 infections and reduce symptoms within a shorter span of time. An important feature invariably noted after secondary vaccination is downregulation of ribosomal proteins, which might plausibly be an important factor arising from epigenetic reprogramming leading to innate immune tolerance. IMPORTANCE The development of multiple vaccines against SARS-CoV-2 infection is an unprecedented milestone achieved globally. Immunization of the mass population is a rigorous process for getting the pandemic under control, yet continuous challenges are being faced, one of them being breakthrough infections. This is the first study wherein the vaccination breakthrough cases of COVD-19 relative to unvaccinated infected individuals have been explored. In the context of vaccination, how do innate and adaptive immune responses correspond to SARS-CoV-2 infection? How do these responses culminate in a milder observable phenotype with shorter hospital stay in vaccination breakthrough cases compared with the unvaccinated? We identified a subdued transcriptional landscape in vaccination breakthroughs with decreased expression of a large set of immune and ribosomal proteins genes. We propose a module of innate immune memory, i.e., immune tolerance, which plausibly helps to explain the observed mild phenotype and fast recovery in vaccination breakthroughs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunación , Inmunidad Innata , Infección Irruptiva
8.
PLoS Pathog ; 19(2): e1011160, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36800345

RESUMEN

The development of COVID 19 vaccines as an effort to mitigate the outbreak, has saved millions of lives globally. However, vaccination breakthroughs have continuously challenged the vaccines' effectiveness and provided incentives to explore facets holding potential to alter vaccination-induced immunity and protection from subsequent infection, especially VOCs (Variants Of Concern). We explored the functional dynamics of nasopharyngeal transcriptionally active microbes (TAMs) between vaccination breakthroughs and unvaccinated SARS-CoV-2 infected individuals. Microbial taxonomic communities were differentially altered with skewed enrichment of bacterial class/genera of Firmicutes and Gammaproteobacteria with grossly reduced phylum Bacteroidetes in vaccination breakthrough individuals. The Bacillus genus was abundant in Firmicutes in vaccination breakthrough whereas Prevotella among Bacteroides dominated the unvaccinated. Also, Pseudomonas and Salmonella of Gammaproteobacteria were overrepresented in vaccination breakthrough, whilst unvaccinated showed presence of several genera, Achromobacter, Bordetella, Burkholderia, Neisseria, Hemophilus, Salmonella and Pseudomonas, belonging to Proteobacteria. At species level, the microbiota of vaccination breakthrough exhibited relatively higher abundance of unique commensals, in comparison to potential opportunistic microbes enrichment in unvaccinated patients' microbiota. Functional metabolic pathways like amino acid biosynthesis, sulphate assimilation, fatty acid and beta oxidation, associated with generation of SCFAs (short chain fatty acids), were enriched in vaccination breakthroughs. Majorly, metabolic pathways of LCFAs biosynthesis (long chain fatty acids; oleate, dodecenoate, palmitoleate, gondoate) were found associated with the unvaccinated. Our research highlights that vaccination decreases the microbial diversity in terms of depleting opportunistic pathogens and increasing the preponderance of commensals with respect to unvaccinated patients. Metabolic pathway analysis substantiates the shift in diversity to functionally modulate immune response generation, which may be related to mild clinical manifestations and faster recovery times during vaccination breakthroughs.


Asunto(s)
COVID-19 , Gammaproteobacteria , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2/genética , Vacunación , Bacteroidetes , Ácidos Grasos
9.
Front Med (Lausanne) ; 10: 1294699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288302

RESUMEN

Introduction: Recombination serves as a common strategy employed by RNA viruses for their genetic evolution. Extensive genomic surveillance during the COVID-19 pandemic has reported SARS-CoV-2 Recombinant strains indicating recombination events during the viral evolution. This study introspects the phenomenon of genome recombination by tracing the footprint of prominent lineages of SARS-CoV-2 at different time points in the context of on-going evolution and emergence of Recombinants. Method: Whole genome sequencing was carried out for 2,516 SARS-CoV-2 (discovery cohort) and 1,126 (validation cohort) using nasopharyngeal samples collected between the time period of March 2020 to August 2022, as part of the genomic surveillance program. The sequences were classified according to the different lineages of SARS-CoV-2 prevailing in India at respective time points. Results: Mutational diversity and abundance evaluation across the 12 lineages identified 58 Recombinant sequences as harboring the least number of mutations (n = 111), with 14 low-frequency unique mutations with major chunk of mutations coming from the BA.2. The spontaneously/dynamically increasing and decreasing trends of mutations highlight the loss of mutations in the Recombinants that were associated with the SARS-CoV-2 replication efficiency, infectivity, and disease severity, rendering them functionally with low infectivity and pathogenicity. Linkage disequilibrium (LD) analysis revealed that mutations comprising the LD blocks of BA.1, BA.2, and Recombinants were found as minor alleles or as low-frequency alleles in the LD blocks from the previous SARS-CoV-2 variant samples, especially Pre-VOC. Moreover, a dissipation in the size of LD blocks as well as LD decay along with a high negative regression coefficient (R squared) value was demonstrated in the Omicron and BA.1 and BA.2 lineages, which corroborated with the breakpoint analysis. Conclusion: Together, the findings help to understand the evolution and emergence of Recombinants after the Omicron lineages, for sustenance and adaptability, to maintain the epidemic spread of SARS-CoV-2 in the host population already high in immunity levels.

10.
Mov Disord Clin Pract ; 9(7): 886-899, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36247901

RESUMEN

Background: Hypermanganesemia with dystonia 1 and 2 (HMNDYT1 and 2) are rare, inherited disorders of manganese transport. Objectives: We aimed to describe clinical, laboratory features, and outcomes among children with HMNDYT. Methods: We conducted a retrospective multicenter study involving tertiary centers across India. We enrolled children between 1 month to 18 years of age with genetically confirmed/clinically probable HMNDYT. Clinical, laboratory profile, genetic testing, treatment details, and outcomes scored by treating physicians on a Likert scale were recorded. Results: We enrolled 27 children (19 girls). Fourteen harbored SLC30A10 mutations; nine had SLC39A14 mutations. The SLC39A14 cohort had lower median age at onset (1.3 [interquartile range (IQR), 0.7-5.5] years) versus SLC30A10 cohort (2.0 [IQR, 1.5-5.1] years). The most frequent neurological features were dystonia (100%; n = 27), gait abnormality (77.7%; n = 21), falls (66.7%; n = 18), and parkinsonism (59.3%; n = 16). Median serum manganese (Mn) levels among SLC39A14 (44.9 [IQR, 27.3-147.7] mcg/L) cohort were higher than SLC30A10 (29.4 [17.1-42.0] mcg/L); median hemoglobin was higher in SLC30A10 (16.3 [IQR, 15.2-17.5] g/dL) versus SLC39A14 cohort (12.5 [8.8-13.2] g/dL). Hepatic involvement and polycythaemia were observed exclusively in SLC30A10 variants. A total of 26/27 children underwent chelation with disodium calcium edetate. Nine demonstrated some improvement, three stabilized, two had marked improvement, and one had normalization. Children with SLC39A14 mutations had poorer response. Two children died and nine were lost to follow-up. Conclusions: We found female predominance. Children with SLC39A14 mutations presented at younger age and responded less favorably to chelation compared to SLC30A10 mutations. There is emerging need to better define management strategies, especially in low resource settings.

11.
Neurol India ; 70(4): 1643-1648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36076674

RESUMEN

X-linked myopathy with excessive autophagy (XMEA) is a rare, recently characterized type of autophagic vacuolar myopathy caused by mutations in the VMA21 gene. It is characterized by slowly progressive weakness restricted to proximal limb muscles and generally has a favorable outcome. The characteristic histological and ultrastructural features distinguish this entity from other mimics, notably Danon disease. XMEA is an under recognized disease and should be considered in the differentials of slowly progressive myopathy in children. Awareness of this rare entity is also important for the pathologists in order to distinguish it from other causes of vacuolar myopathy in view of its favourable prognosis. We report the first genetically confirmed case of XMEA from India in an 8-year-old boy which was diagnosed based on the characteristic light microscopic and ultrastructural findings on muscle biopsy and subsequently confirmed by mutation analysis. The differential diagnostic considerations are also discussed.


Asunto(s)
Enfermedades Musculares , ATPasas de Translocación de Protón Vacuolares , Autofagia/genética , Niño , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Enfermedades por Almacenamiento Lisosomal , Masculino , Músculo Esquelético/patología , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/patología , ATPasas de Translocación de Protón Vacuolares/genética
12.
Brief Funct Genomics ; 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35909219

RESUMEN

Infectious diseases are the leading cause of morbidity and mortality worldwide. Causative pathogenic microbes readily mutate their genome and lead to outbreaks, challenging the healthcare and the medical support. Understanding how certain symptoms manifest clinically is integral for therapeutic decisions and vaccination efficacy/protection. Notably, the interaction between infecting pathogens, host response and co-presence of microbes influence the trajectories of disease progression and clinical outcome. The spectrum of observed symptomatic patients (mild, moderate and severe) and the asymptomatic infections highlight the challenges and the potential for understanding the factors driving protection/susceptibility. With the increasing repertoire of high-throughput tools, such as cutting-edge multi-omics profiling and next-generation sequencing, genetic drivers of factors linked to heterogeneous disease presentations can be investigated in tandem. However, such strategies are not without limits in terms of effectively integrating host-pathogen interactions. Nonetheless, an integrative genomics method (for example, RNA sequencing data) for exploring multiple layers of complexity in host-pathogen interactions could be another way to incorporate findings from high-throughput data. We further propose that a Holo-transcriptome-based technique to capture transcriptionally active microbial units can be used to elucidate functional microbiomes. Thus, we provide holistic perspective on investigative methodologies that can harness the same genomic data to investigate multiple seemingly independent but deeply interconnected functional domains of host-pathogen interaction that modulate disease severity and clinical outcomes.

13.
Microbiol Res ; 262: 127099, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779308

RESUMEN

BACKGROUND: Emergence of SARS-CoV-2 VOCs at different time points through COVID-19 pandemic raised concern for increased transmissibility, infectivity and vaccination breakthroughs. METHODS: 1567 international travellers plus community transmission COVID-19 cases were analysed for mutational profile of VOCS, that led to notable waves in India, namely Alpha, Delta, and Omicron. Spike mutations in Linkage Disequilibrium were investigated for potential impact on structural and functional changes of Spike-ACE2. RESULTS: ORF1ab and spike harboured diverse mutational signatures for each lineage. B.1.617.2 and AY. * demonstrated comparable profile, yet non-clade defining mutations were majorly unique between international vs community samples. Contrarily, Omicron lineages showed substantial overlap in non-clade defining mutations, signifying early phase of transmission and evolution within Indian community. Mutations in LD for Alpha [N501Y, A570D, D1118H, S982A], Delta [P681R, L452R, EFR:156-158 G, D950N, G142D] and Omicron [P681H, D796Y, N764K, N969K, N501Y, S375F] resulted in decreased binding affinity of Spike-ACE2 for Alpha and BA.1 whereas Delta, Omicron and BA.2 demonstrated strong binding. CONCLUSION: Genomic surveillance tracked spread of VOCs in international travellers' vs community transmission. Behavioural transmission patterns of variants, based on selective advantage incurred by spike mutations, led us to predict sudden takeover of Delta over Alpha and BA.2 over BA.1 in India.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Mutación , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
Microbiol Spectr ; 10(3): e0231121, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35579429

RESUMEN

The modulators of severe COVID-19 have emerged as the most intriguing features of SARS-CoV-2 pathogenesis. This is especially true as we are encountering variants of concern (VOC) with increased transmissibility and vaccination breakthroughs. Microbial co-infections are being investigated as one of the crucial factors for exacerbation of disease severity and complications of COVID-19. A key question remains whether early transcriptionally active microbial signature/s in COVID-19 patients can provide a window for future disease severity susceptibility and outcome? Using complementary metagenomics sequencing approaches, respiratory virus oligo panel (RVOP) and Holo-seq, our study highlights the possible functional role of nasopharyngeal early resident transcriptionally active microbes in modulating disease severity, within recovered patients with sub-phenotypes (mild, moderate, severe) and mortality. The integrative analysis combines patients' clinical parameters, SARS-CoV-2 phylogenetic analysis, microbial differential composition, and their functional role. The clinical sub-phenotypes analysis led to the identification of transcriptionally active bacterial species associated with disease severity. We found significant transcript abundance of Achromobacter xylosoxidans and Bacillus cereus in the mortality, Leptotrichia buccalis in the severe, Veillonella parvula in the moderate, and Actinomyces meyeri and Halomonas sp. in the mild COVID-19 patients. Additionally, the metabolic pathways, distinguishing the microbial functional signatures between the clinical sub-phenotypes, were also identified. We report a plausible mechanism wherein the increased transcriptionally active bacterial isolates might contribute to enhanced inflammatory response and co-infections that could modulate the disease severity in these groups. Current study provides an opportunity for potentially using these bacterial species for screening and identifying COVID-19 patient sub-groups with severe disease outcome and priority medical care. IMPORTANCE COVID-19 is invariably a disease of diverse clinical manifestation, with multiple facets involved in modulating the progression and outcome. In this regard, we investigated the role of transcriptionally active microbial co-infections as possible modulators of disease pathology in hospital admitted SARS-CoV-2 infected patients. Specifically, can there be early nasopharyngeal microbial signatures indicative of prospective disease severity? Based on disease severity symptoms, the patients were segregated into clinical sub-phenotypes: mild, moderate, severe (recovered), and mortality. We identified significant presence of transcriptionally active isolates, Achromobacter xylosoxidans and Bacillus cereus in the mortality patients. Importantly, the bacterial species might contribute toward enhancing the inflammatory responses as well as reported to be resistant to common antibiotic therapy, which together hold potential to alter the disease severity and outcome.


Asunto(s)
Achromobacter denitrificans , COVID-19 , Coinfección , Microbiota , Achromobacter denitrificans/genética , Bacillus cereus , Humanos , Microbiota/genética , Filogenia , Estudios Prospectivos , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad
16.
J Med Genet ; 59(1): 28-38, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106379

RESUMEN

BACKGROUND: C-type natriuretic peptide (CNP), its endogenous receptor, natriuretic peptide receptor-B (NPR-B), as well as its downstream mediator, cyclic guanosine monophosphate (cGMP) dependent protein kinase II (cGKII), have been shown to play a pivotal role in chondrogenic differentiation and endochondral bone growth. In humans, biallelic variants in NPR2, encoding NPR-B, cause acromesomelic dysplasia, type Maroteaux, while heterozygous variants in NPR2 (natriuretic peptide receptor 2) and NPPC (natriuretic peptide precursor C), encoding CNP, cause milder phenotypes. In contrast, no variants in cGKII, encoded by the protein kinase cGMP-dependent type II gene (PRKG2), have been reported in humans to date, although its role in longitudinal growth has been clearly demonstrated in several animal models. METHODS: Exome sequencing was performed in two girls with severe short stature due to acromesomelic limb shortening, brachydactyly, mild to moderate platyspondyly and progressively increasing metaphyseal alterations of the long bones. Functional characterisation was undertaken for the identified variants. RESULTS: Two homozygous PRKG2 variants, a nonsense and a frameshift, were identified. The mutant transcripts are exposed to nonsense-mediated decay and the truncated mutant cGKII proteins, partially or completely lacking the kinase domain, alter the downstream mitogen activation protein kinase signalling pathway by failing to phosphorylate c-Raf 1 at Ser43 and subsequently reduce ERK1/2 activation in response to fibroblast growth factor 2. They also downregulate COL10A1 and upregulate COL2A1 expression through SOX9. CONCLUSION: In conclusion, we have clinically and molecularly characterised a new acromesomelic dysplasia, acromesomelic dysplasia, PRKG2 type (AMDP).


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Enanismo/genética , Mutación , Osteocondrodisplasias/genética , Braquidactilia , Niño , Enanismo/metabolismo , Femenino , Humanos , Osteocondrodisplasias/metabolismo , Linaje , Secuenciación del Exoma
17.
J Neuromuscul Dis ; 9(1): 95-109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34633329

RESUMEN

BACKGROUND AND PURPOSE: Mutations in the GMPPB gene affect glycosylation of α-dystroglycan, leading to varied clinical phenotypes. We attempted to delineate the muscle MR imaging spectrum of GMPPB-related Congenital Myasthenic syndrome (CMS) in a single-center cohort study. OBJECTIVE: To identify the distinct patterns of muscle involvement in GMPPB gene mutations. METHODS: We analyzed the muscle MR images of 7 genetically proven cases of GMPPB dystroglycanopathy belonging to three families and studied the potential qualitative imaging pattern to aid in clinico -radiological diagnosis in neuromuscular practice. All individuals underwent muscle MRI (T1, T2, STIR/PD Fat sat. sequences in 1.5 T machine) of the lower limbs. Qualitative assessment and scoring were done for muscle changes using Mercuri staging for fibro-fatty replacement on T1 sequence and Borsato score for myoedema on STIR sequence. RESULTS: All patients were of South Indian origin and presented as slowly progressive childhood to adult-onset fatigable limb-girdle muscle weakness, elevated creatine kinase level, and positive decrement response in proximal muscles. Muscle biopsy revealed features of dystrophy. All patients demonstrated identical homozygous mutation c.1000G > A in the GMPPB gene. MRI demonstrated early and severe involvement of paraspinal muscles, gluteus minimus, and relatively less severe involvement of the short head of the biceps femoris. A distinct proximo-distal gradient of affliction was identified in the glutei, vasti, tibialis anterior and peronei. Also, a postero-anterior gradient was observed in the gracilis muscle. CONCLUSION: Hitherto unreported, the distinctive MR imaging pattern described here, coupled with relatively slowly progressive symptoms of fatigable limb-girdle weakness, would facilitate an early diagnosis of the milder form of GMPPB- dystroglycanopathy associated with homozygous GMPPB gene mutation.


Asunto(s)
Músculo Esquelético/patología , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/patología , Adulto , Estudios de Cohortes , Humanos , India , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Síndromes Miasténicos Congénitos/diagnóstico por imagen , Linaje
18.
Cleft Palate Craniofac J ; 59(11): 1329-1339, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34787502

RESUMEN

BACKGROUND: Pierre Robin Sequence (PRS) affects approximately 1 per 8500 to 14000 new-borns worldwide. Although the clinical entity is well defined, the pathogenesis of PRS is debated. The present study aims to understand the contribution of genomic imbalances and genetic variants in patients clinically diagnosed of PRS. METHODOLOGY: A total of 7 independent patients with nonsyndromic PRS thoroughly evaluated by a medical geneticist at a tertiary care hospital, were included in the study. Blood samples were collected from these patients and their family members. Array CGH was performed on all 7 patients and their respective family members for detection of underlying cytogenetic defects. Whole exome sequencing (WES) was performed for 5 families to capture single nucleotide variants or small indels. RESULTS: Cytogenetic analyses did not detect any previously reported gross chromosomal aberrations for PRS in the patient cohort. However, copy number variations (CNVs) of size <1 Mb were detected in patients which may have implications in PRS. The present study provided evidence for the occurrence of de novo deletions at 7p14.1 locus in PRS patients: further validating the candidate loci susceptibility in oral clefts. WES data identified LOXL3 as candidate gene, carrying novel deleterious variant, which is suggestive of the role of point mutations in the pathogenesis of PRS. CONCLUSION: The present study offered considerable insight into the contribution of cytogenetic defects and novel point mutation in the etiology of nonsyndromic PRS. Studies comprising large number of cases are required to fully elucidate the genetic mechanisms underlying the PRS phenotype.


Asunto(s)
Variaciones en el Número de Copia de ADN , Síndrome de Pierre Robin , Aminoácido Oxidorreductasas/genética , Análisis Citogenético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Nucleótidos , Síndrome de Pierre Robin/diagnóstico , Síndrome de Pierre Robin/genética
19.
Acta Neurol Scand ; 145(4): 399-406, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34841512

RESUMEN

BACKGROUND: Recently, TANK binding kinase 1 (TBK1) mutation has been reported as a causative gene for overlap frontotemporal dementia (FTD)-amyotrophic lateral sclerosis (ALS) syndrome. However, there are no reports from families of South Asian ethnicity. OBJECTIVE: To report a case study of a family with the proband having overlap FTD-ALS syndrome caused by a novel TBK1 variant. MATERIALS AND METHODS: Clinical, brain imaging, genetic analysis and laboratory data of the patient with FTD-ALS were performed. In addition, family-based segregation analysis of identified novel variants was also done. RESULTS: This study pertains to genetic analysis in 11 members in a family with only one member affected with overlap FTD-ALS syndrome. The whole-exome sequencing analysis in the symptomatic member showed a novel loss-of-function (LoF) variant c.1810G>T(p.E604X) in the TBK1 gene. Neuroimaging showed a pattern of asymmetric frontotemporal atrophy and hypometabolism. Segregation analysis of the variation demonstrated its presence in several family members, although none of the other members was symptomatic. Further, we observed another missense variation in the NEFH gene (p.Pro683Leu) which was seen in the symptomatic and two asymptomatic family members, the pathogenicity of which is unclear. CONCLUSION: This is the first study of a rare novel TBK1 variant associated with FTD-ALS from India. Asymptomatic family members with the variant have important clinical implications and necessitate the genetic evaluation and long-term follow-up of family members of patients detected with TBK1 mutations. Therefore, although infrequent, genetic screening for the TBK1 gene should be considered when encountering overlap FTD syndromes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteínas Serina-Treonina Quinasas , Esclerosis Amiotrófica Lateral/diagnóstico , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Pruebas Genéticas , Humanos , Mutación , Proteínas Serina-Treonina Quinasas/genética
20.
Ann Indian Acad Neurol ; 25(6): 1067-1074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36911451

RESUMEN

Background: A prospective study using array CGH in children with Syndromic microcephaly from a tertiary pediatric healthcare centre in India. Aim: To identify the copy number variations causative of microcephaly detected through chromosomal array CGH. Patients and Methods: Of the 60 patients, 33 (55%) males and 27 (45%) females who consulted the Rare Disease Clinic at Department of Pediatrics, SMS Medical College, Jaipur, with developmental delay/facial dysmorphism/congenital anomalies in combination with microcephaly were included. Exclusion Criteria: Children with acquired or non-genetic causes of microcephaly, craniosynostosis, metabolic diseases, known chromosomal aneuploidy such as trisomy 21, 13, and 18 and abnormal karyotype were excluded. The cohort was analyzed by array CGH in order to identify potentially pathogenic copy number variants (CNVs). Results: Clinically relevant pathogenic or likely pathogenic copy number variations (CNVs) were identified in 20/60 (33.3%) patients, variant of uncertain significance (VOUS) in 4/60 (6.6%) cases and benign CNVs in 3/60 (5%) of total cases. Out of 20 cases with pathogenic CNVs, 12 (60%) patients detected with a deletion, five (25%) patients with duplication and three (15%) patients resulted with a complex chromosomal rearrangement. Twelve cases present CNVs containing genes known to be implicated in microcephaly etiology. Conclusion: This research highlights the contribution of submicroscopic chromosomal changes in the etiology of microcephaly in combination with developmental delay/facial dysmorphism/congenital anomalies (syndromic microcephaly). Our studies provide more insights into the benefits derived by using array CGH analysis in patients with syndromic microcephaly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...